

Current Progress on the Design and Analysis of the JWST ISIM Bonded Joints for Survivability at Cryogenic Temperatures

Andrew Bartoszyk, Swales Aerospace FEMCI 2005 Workshop May 5, 2005

JWST/ISIM Stress Team

Andrew Bartoszyk, Swales Aerospace – Stress Analysis
John Johnston, NASA GSFC – Analysis Lead
Charles Kaprielian, Swales Aerospace – Stress Analysis
Cengiz Kunt, Swales Aerospace – Stress Analysis Lead
Joel Proebstle, Swales Aerospace – Stress Analysis
Benjamin Rodini, Swales Aerospace – Composite Materials
Daniel Young, Swales Aerospace – Stress Analysis

Design and Analysis Challenges

Design Requirements

- Metal/composite bonded joints required at a number of nodal locations on the JWST/ISIM composite truss structure to accommodate bolted instrument interfaces and flexures.
- Survival temperature at 22K (\sim 400°F); 271K total Δ T from RT.
- Composite truss tube with high axial stiffness (~23 msi) and low axial CTE (~ 0 ppm/K).
- Multiple thermal cycles throughout design life of structure. In order to survive launch loads, joints cannot degrade more than an acceptable amount.

Design/Analysis Challenges

- Large thermal mismatch stresses between metal fitting and composite tube at cryogenic temperature (22K).
- Analysis and design experience is very limited for metal/composite bonded joints at temperatures below liquid nitrogen (~80K).
- Thermo-elastic material properties and strengths for composites and adhesives at 22K are not available and difficult to test for.

ISIM Basic Joint Assemblies

Basic Plug Joint Details

- Stiffness and strength properties are given for 22K.
- Thermal expansion properties are secant CTE from RT to 22K.

Composite Modeling and Mesh Size

- Mesh size: 2.5 mm square in-plane
- Surface plies at bonded interfaces modeled individually
- Aspect ratio ≅ 2.5/0.071 ≅ 35
- Laminate core modeled with thicker elements
- Adhesive modeled with one element through the thickness
- Same mesh size used in all joint FEMs including development test FEMs
- Stress recovery: Element centroid for interlaminar, corner for others

Ply 1 – Explicit Props (T300/954-6 Uni Ply)

Ply 2 – Tube Smeared Props (T300/954-6 Uni Ply)

Ply 3 – Tube Smeared Props (M55J/954-6 Uni Ply)

Lamina Failure Criteria – Bonded Joints

Interlaminar Failure Prediction

An empirical Interlaminar Failure Criterion is used for critical lamina:

$$\left(\frac{\sigma_{33}}{F_{33}}\right)^2 + \left(\frac{\tau_{RSS}}{F_{RSS}}\right)^2 = 1$$

where σ_{33} is peel stress, τ_{rss} is resultant transverse shear stress, and F terms are material constants dependent on interlaminar strengths, which are being

determined by testing.

Margin Calculations

Stress State 1

$$MS = \frac{1}{FS \cdot \sqrt{\left(\frac{\sigma_{33}}{F_{33}}\right)^2 + \left(\frac{\tau_{RSS}}{F_{RSS}}\right)^2}} - 1$$

Stress State 2

$$MS = \frac{F_{RSS}}{FS \cdot \tau_{RSS}} - 1$$

Bonded Joint Design & Sizing Flow

Bonded Joint Analysis Correlation - Procedure

Test Failure Load (Mech & Thermal)

Basic Plug Joint Detailed Stress Analysis

Basic Plug Joint - FEM

Basic Plug Joint - Applied Loads

Load Case	Туре	∆ T (K)	Fz (N)	Remarks	
1	Thermal	-271	0	RT to cold survival temperature (22K)	
2	Thermal & I/F & 1g	-271	4513	Thermal plus worst case tension (I/F & 1g) and worst case compression (I/F & 1g)	
3	Thermal & I/F & 1g	-271	-9096		
4	Launch	0	83200	Absolute max axial load from ISIM beam element model loads run (includes additional effective axial load due to moment load)	

Basic Plug Joint - Margin Summary

Load Case	Failure Mode		Allowable (MPa)	Abs Max (MPa)	MS	Comments
Thermal & Mechanical (-271K + I/F + 1g)	Ply-1 (T300)	σ-τ interlaminar			+ 0.40	
	Ply-3 (M55J)	σ-τ interlaminar			+ 0.32	
	Invar (Blade)	VM yield	275	115	+ 0.91	assume strength properties at cryo to equal properties at room temperature
		VM ultimate	414	115	+ 1.57	
	Ply-1 (T300)	σ-τ interlaminar			+ 0.92	
		s11	1380	162	+ 3.73	max corner stress. allowables are based on explicit props.
		s22	81	12.4	+ 2.63	
	Ply-3 (M55J)	σ-τ interlaminar			+ 0.38	
Launch	Tube	s11	439	157	+ 0.55	max corner stress. allowables are based on tube smeared props.
		s22	241	42	+ 2.19	
	Invar (Blade)	VM yield	275	167	+ 0.32	max corner stress in blade, localize stress raisers at blade/hub interface not included
		VM ultimate	414	167	+ 0.77	

Margins presented at PDR, Jan 2005.

Basic Plug Joint

SF and Failure Curve – Basic Joint Assemblies

DSJ Test Data and Estimated Failure Curve

Remarks and Conclusions

- Material characterization testing and joint development testing are in progress. Test results will be critical for analysis correlation and the final design/analysis of the ISIM metal/composite bonded joints.
- A Phase-2 test program is underway and will include thermal survivability testing of basic joints including a plug joint.
- An evaluation of strength degradation due to multiple thermal cycles will also be included in the joint development test program.
- The ISIM Structure successfully passed PDR (Preliminary Design Review) in January 2005, design requirements have been met. Critical Design Review is scheduled for December 2005.